#### THIS OPINION WAS NOT WRITTEN FOR PUBLICATION

The opinion in support of the decision being entered today (1) was not written for publication in a law journal and (2) is not binding precedent of the Board.

Paper No. 22

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE BOARD OF PATENT APPEALS

AND INTERFERENCES

-

Ex parte SHAY-PING T. WANG

\_\_\_\_\_

Appeal No. 1997-3793 Application 08/294,235<sup>1</sup>

ON BRIEF

Before THOMAS, BARRETT, and BLANKENSHIP, <u>Administrative Patent</u> Judges.

BARRETT, Administrative Patent Judge.

# DECISION ON APPEAL

Application for patent filed August 22, 1994, entitled "Artificial Neuron And Method Of Using Same," which is a continuation of Application 08/076,602, filed June 14, 1993, now U.S. Patent 5,390,136, issued February 14, 1995.

This is a decision on appeal under 35 U.S.C. § 134 from the final rejection of claims 1-4 and 12-15. Claims 1, 3, 12, and 14 were amended (part of Paper No. 18) in response to a new ground of rejection in the Examiner's Answer and the new rejection was withdrawn (Supplemental Examiner's Answer, Paper No. 19).

We reverse.

### BACKGROUND

The disclosed invention is directed to a neuron circuit and method of producing a neuron output which multiplies together a plurality of gated input signals  $\mathbf{x_i}^{gi}$  and a predetermined weight, where at least one  $g_i$  is greater than one.

Claim 1, as amended by the amendment filed July 18, 1997, (part of Paper No. 18) is reproduced below.

## 1. A neuron circuit comprising:

a multiplier circuit in communication with a plurality of gated input signals, each of said gated input signals representing one of a plurality of inputs to said neuron circuit raised to an exponential power of one of a plurality of gating functions  $g_i$ , said multiplier circuit for multiplying said gated input signals together to produce a product and for multiplying said product by

a predetermined weight to generate without a threshold comparison a neuron output signal;

wherein at least one of said plurality of gating functions  $g_i$  is greater than 1.

The Examiner relies on the following prior art:

Hata et al. (Hata), <u>Gate Model Networks for Minimization of Multiple-Valued Logic Functions</u>, Proceedings of the Twenty-Third International Symposium on Multiple-Valued Logic, IEEE, 24-27 May, 1993, pp. 29-34.

Claims 1-4 and 12-15 stand rejected under 35 U.S.C. § 102(a) as being clearly anticipated by Hata.

We refer to the Final Rejection (Paper No. 10) (pages referred to as "FR\_\_") and the Examiner's Answer (Paper No. 17) (pages referred to as "EA\_\_") for a statement of the Examiner's position and to the Appeal Brief (Paper No. 16) (pages referred to as "Br\_\_") and the Reply Brief (Paper No. 18) (pages referred to as "RBr\_\_") for a statement of Appellant's arguments thereagainst.

## **OPINION**

The claims are grouped to stand or fall together.

Claim 1 is taken as representative.

Appellant argues that Hata does not disclose an input signal raised to an exponential power of one of the gating functions  $g_i$ , wherein the gating function  $g_i$  is greater than 1. These limitations are found in all the independent claims.

The Examiner finds (FR2) that Hata discloses an input raised to a power at page 32, section 4, line 5 ("1. literal:  $x^s$  ..."), and equations (13) and (14). The Examiner further finds (EA7) that " $x_1^2$ " at page 33, second column, line 14, shows  $x_1$  raised to the power of 2.

Appellant responds that the notation in Hata, while using superscripts which could be easily confused with exponentiation, has nothing to do with exponentiation (Br3-5; RBr2-3).

Appellant is clearly correct. The term  $x_i^j$  is called a "literal" of input variable x, where a literal is a propositional variable or its negation. For an r-valued n-variable function F(X),  $X=\{x_1,x_2,\ldots,x_n\}$  is the set of n-variables, where  $x_i$  takes on values from  $R=\{0,1,\ldots,r-1\}$  (page 32, section 4). The term  $x_i^j$  refers to input variable  $x_i$  having the value j from the r values of set R, not  $x_i$  to the jth power. Since each input  $x_i$  can have one of r values,

there are n·r inputs to each node in the hidden layer. Thus, in Example 3 on page 33, for a 2-variable  $(X=\{x_1,\ x_2\})$  4-valued  $(R=\{0,1,2,3\})$  function there are 2·4=8 inputs  $(x_1^0,x_1^1,x_1^2,x_1^3,x_2^0,x_2^1,x_2^2,x_2^3)$ . In the term  $x_1^2$ ,  $x_1$  refers to the first variable and the superscript 2 refers to the value 2, not a power. Because Hata does not disclose raising an input to a power greater than one, the anticipation rejection of claims 1-4 and 12-15 is reversed.

Although Appellant has elected to only argue the exponential power limitation, we also note that Hata does not disclose a multiplier circuit for multiplying the gated input signals together. In equation (13), the dots between the terms refer to a logical AND operation (page 30, right column, line 5), not a product. Figure 1 shows a summer as evidenced by equation (2). For this additional reason, the anticipation rejection of claims 1-4 and 12-15 is reversed.

#### REVERSED

Anthony J. Sarli, Jr. MOTOROLA, INC. Corporate Offices 1303 E. Algonquin Road Schaumburg, IL 60196